Add like
Add dislike
Add to saved papers

Transparent thermoplastic polyurethane air filters for efficient electrostatic capture of particulate matter pollutants.

Nanotechnology 2019 January 5
Particulate matter (PM) air pollution has been established as a significant threat to public health and a destructive factor to the climate and eco-systems. In order to eliminate the effects of PM air pollution, various air filtering strategies based on electrospun nanofibers have recently been developed. However, to date, almost none of the existing nanofibers based air filters can meet the requirements of high-performance air PM filtering, including high PM removal efficiency, low resistance to airflow, and long service life, etc. For the first time, we report a fabrication process using the electrospinning method for air filters based on thermoplastic polyurethane (TPU) nanofibers. The average diameters of TPU nanofibers are tunable from 0.14 ± 0.06 μm to 0.82 ± 0.22 μm by changing the TPU concentrations in polymeric solutions. The optimized TPU nanofibers based air filters demonstrate the attractive attributes of high PM2.5 removal efficiency up to 98.92%, good optical transparency of ∼60%, low pressure drop of ∼10 Pa, high quality factor of 0.45 Pa-1 , and long service life under the flow rate of 200 ml min-1 , which is ground-breaking compared with the existing nanofibers based air filters. These TPU nanofibers based air filters, with the excellent filtration performance and light transmittance, will shed light on the future research of nanofibers for various filtration applications and greatly benefit the public health by reducing the effects of PM air pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app