Add like
Add dislike
Add to saved papers

Acid-Interface Engineering of Carbon Nanotube/Elastomers with Enhanced Sensitivity for Stretchable Strain Sensors.

Stretchable strain sensors with high sensitivity or gauge factor (GF), large stretchability, and long-term durability are highly demanded in human motion detection, artificial intelligence, and electronic skins. Nevertheless, to develop high-sensitive sensors without sacrificing the stretchability cannot be realized using simple device configurations. In this work, an acid-interface engineering (AIE) method was proposed to develop a stretchable strain sensor with high GF and large stretchability. The AIE generates a layer of SiO x at the interface between the carbon nanotube (CNT) film and Ecoflex, playing a key role in enhancing the sensor's GF. Compared to devices without AIE (GF = 2.4), the ones with AIE are significantly improved. At an AIE time of 10 min, the GF up to 1665.9 is achieved without sacrificing the stretchability (>100%). The AIE-generated cracks are found to modulate the electrical behaviors and enhance the GFs of sensors with AIE through the crack-induced rapid reduction in the electrical conduction pathway, which is manipulated by the CNTs bridging over the cracks. The device with AIE proves its high mechanical durability through a cycling test (>10 000 cycles) at a high strain up to ∼80%, further paving its practical applications in various human motion detections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app