Journal Article
Review
Add like
Add dislike
Add to saved papers

Exploration of Carbon Allotropes with Four-membered Ring Structures on Quantum Chemical Potential Energy Surfaces.

The existence of a new carbon allotrope family with four-membered rings as a key unit has been recently predicted with quantum chemical calculations. This family includes carbon allotropes in prism-, polymerized prism-, sheet-, tube-, and wavy-forms. An atypical bond property has been observed in this series of carbon structures, which differs from the typical sp3 , sp2 , and sp hybridizations. The lowest energy barrier from some of the equilibrium states of the carbon structures has been determined with the SHS-ADDF (scaled-hypersphere-search combined with the anharmonic downward distortion following) method within the GRRM software program package. The height of the barriers indicates that the well is deep enough for the carbon structures to exist. This class of carbon allotropes is expected to be energy-reservoirs with extra energy of 100-350 kJ mol-1 per one carbon atom. This article presents the structures, energies and reactivity of the carbon allotropes with four-membered ring structures as well as the background of the findings in the context of the global exploration of potential energy surfaces. © 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app