Add like
Add dislike
Add to saved papers

Fragment and cluster ions from gaseous and condensed pyridine produced under electron impact.

We report on direct measurement of all major ion-fragments and cluster-ions formed during high-energy electron impact of 2 keV on gaseous and condensed-phase pyridine. The ion-fragments of the parent pyridine cation are discussed in groups according to the number of atoms from the aromatic ring. The ion yield distributions within these groups show significant shifts towards higher masses for condensed pyridine compared to gaseous pyridine due to hydrogen migration. A wide spectrum of desorbed hydrogenated fragment-ions and ionic clusters with masses up to 320 u are observed for pyridine. The ion yields for the protonated parent molecule (C5H5NH+), the dehydrogenated dimer (C10H9N2+) and the dehydrogenated trimer (C15H12N3+) depend on the mass of the desorbing ionic clusters. The strongest cluster signals are assigned to binding between the parent cation and subunits of the pyridine molecule. Quantum-chemical calculations reveal that the formation of a bond between the pyridine molecules and a carbenium ion is crucial for the stability of selected cluster ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app