Add like
Add dislike
Add to saved papers

The use of chromium (III) complexes to enhance peptide protonation by electrospray ionization mass spectrometry.

The addition of trivalent chromium, Cr (III), reagents to peptide solutions can increase the intensity of doubly protonated peptides, [M + 2H]2+ , through electrospray ionization (ESI). Three model heptapeptides were studied: neutral (AAAAAAA), acidic (AAEEEAA), and basic (AAAKAAA). The neutral and acidic peptides form almost no 2+ ions in the absence of Cr (III). Twenty Cr (III) complexes were used as potential enhanced protonation reagents, including eleven complexes with non-labile ligands and nine with labile ligands. The complexes that provide the most abundant [M + 2H]2+ , the greatest [M + 2H]2+ to [M + H]+ ratio, and the cleanest mass spectra are [Cr(H2 O)6 ](NO3 )3 ·3H2 O and [Cr (THF)3 ]Cl3 . Anions in Cr (III) reagents can also affect the intensity of [M + 2H]2+ and the [M + 2H]2+ to [M + H]+ ratio through cation-anion interactions. The influence of anions on the extent of peptide protonation follows the trend ClO4 - ˃ SO4 2- ˃ Br- ˃ Cl- ˃ F- ≈ NO3 - . Solvent effects and complexes with varying number of water ligands were investigated to study the importance of water in enhanced protonation. Aqueous solvent systems and Cr (III) complexes that have at least one bound water ligand in solution must be used for successful increase in the intensity of [M + 2H]2+ , which indicates that water is involved in the mechanism of Cr (III)-induced enhanced protonation. The ESI source design is also important because no enhanced protonation was observed using a Z-spray source. The current results suggest that this Cr (III)-induced effect occurs during the ESI desolvation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app