Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Expanded haemodialysis: from operational mechanism to clinical results.

Recent advances in chemical composition and new production techniques resulted in improved biocompatibility and permeability of dialysis membranes. Among these, the creation of a new class of membranes called medium cut-off (MCO) represents an important step towards improvement of clinical outcomes. Such membranes have been developed to improve the clearance of medium to high molecular weight (MW) solutes (i.e. uraemic toxins in the range of 5-50 kDa). MCO membranes have peculiar retention onset and cut-off characteristics. Due to a modified sieving profile, MCO membranes have also been described as high-retention onset. The significant internal filtration achieved in MCO haemodialysers provides a remarkable convective clearance of medium to high MW solutes. The marginal loss of albumin observed in MCO membranes compared with high cut-off membranes is considered acceptable, if not beneficial, producing a certain clearance of protein-bound solutes. The application of MCO membranes in a classic dialysis modality characterizes a new technique called expanded haemodialysis. This therapy does not need specific software or dedicated hardware, making its application possible in every setting where the quality of dialysis fluid meets current standards.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app