Add like
Add dislike
Add to saved papers

Metal-Doping of La 5.4 MoO 11.1 Proton Conductors: Impact on the Structure and Electrical Properties.

Inorganic Chemistry 2018 October 16
La5.4 MoO11.1 proton conductors with different metal doping (Ca2+ , Sr2+ , Ba2+ , Ti4+ , Zr4+ , and Nb5+ ) have been prepared and structurally and electrically characterized. Different polymorphs are stabilized depending on the doping and cooling rate used during the synthesis process. The most interesting results are obtained for Nb-doping, La5.4 Mo1- x Nb x O11.1- x/2 , where single compounds are obtained in the compositional range 0 ≤ x ≤ 0.2. These materials are fully characterized by structural techniques such as X-ray and neutron powder diffraction and transmission electron microscopy, which independently confirm the changes of polymorphism. Scanning electron microscopy and impedance spectroscopy measurements in dry/wet gases (N2 , O2 , and 5% H2 -Ar) showed an enhancement of the sinterability and electrical properties of the materials after Nb-doping. Conductivity measurements under very reducing conditions revealed that these materials are mixed ionic-electronic conductors, making them potential candidates for hydrogen separation membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app