Add like
Add dislike
Add to saved papers

Single-Molecule Kinetic Investigation of Cocaine-Dependent Split-Aptamer Assembly.

Analytical Chemistry 2018 November 7
Aptamers are short nucleic-acid biopolymers selected to have high affinity and specificity for protein or small-molecule target analytes. Aptamers can be engineered into split-aptamer biosensors comprising two nucleic acid strands that coassemble as they bind to a target, resulting in a large signal change from attached molecular probes (e.g., molecular beacons). The kinetics of split-aptamer assembly and their dependence on target recognition are largely unknown; knowledge of these kinetics could help in design and optimization of split-aptamer biosensors. In this work, we measure assembly kinetics of cocaine-dependent split-aptamer molecules using single-molecule fluorescence imaging. Assembly is monitored between a DNA strand tethered to a glass substrate and solutions containing the other strand tagged with a fluorescent label, with varying concentrations of the cocaine analyte. Dissociation rates are measured by tracking individual molecules and measuring their bound lifetimes. Dissociation-time distributions are biexponential, possibly indicating different folded states of the aptamer. The dissociation rate of only the longer-lived complex decreases with cocaine concentration, suggesting that cocaine stabilizes the long-lived aptamer complex. The variation in the slow dissociation rate with cocaine concentration is well described with an equilibrium-binding model, where the dissociation rate approaches a saturation limit consistent with the dissociation-equilibrium constant for cocaine-binding to the split aptamer. This single-molecule methodology provides a sensitive readout of cocaine-binding based on the dissociation kinetics of the split aptamer, allowing one to distinguish target-dependent aptamer assembly from background assembly. This methodology could be used to study other systems where target association affects the stability of aptamer duplexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app