Add like
Add dislike
Add to saved papers

Short-term replacement of starch with isomaltulose enhances both insulin-dependent and -independent glucose uptake in rat skeletal muscle.

Dietary intervention for preventing postprandial increases in glucose level by replacing high-glycemic index (GI) carbohydrates with lower-GI carbohydrate has been proposed as a strategy for treating insulin-resistant metabolic disorders such as type II diabetes. In this study, we examined the effect of short-term replacement of starch with a low-GI disaccharide, isomaltulose, on insulin action in skeletal muscle. Male Wistar rats were fed isomaltulose for 12 h during their dark cycle. In isolated epitrochlearis muscle, insulin-induced glucose uptake was greater in tissue from rats treated with isomaltulose than from those treated with starch. This insulin-sensitizing effect occurred independently of changes visceral fat mass. To determine whether this sensitization was specific to insulin stimulation, we also measured glucose uptake in response to exercise. In isolated epitrochlearis muscles from rats that performed swimming exercise, exercise-induced glucose uptake was higher in isomaltulose-treated than starch-treated animals. This amplification was associated with increased phosphorylation of exercise-induced AMP-activated protein kinase. In conclusion, our results demonstrate that short-term replacement of starch with isomaltulose enhances both insulin-dependent and -independent glucose uptake in isolated skeletal muscle. This transient replacement of carbohydrate with isomaltulose, together with exercise, represents a potentially effective approach for the management of insulin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app