Add like
Add dislike
Add to saved papers

Hypoxia-induced autophagy promotes EGFR loss in specific cell contexts, which leads to cell death and enhanced radiosensitivity.

Treatment failure through radioresistance of tumors is associated with activation of the epidermal growth factor receptor (EGFR). Tumor cell proliferation, DNA-repair, hypoxia and metastases-formation are four mechanisms in which EGFR signaling has an important role. However, the effect of hypoxia on EGFR expression is still controversial. In this study, we demonstrated that hypoxia enhanced EGFR expression and sustained cell survival in SiHa, CAL 27 and A549 cells at both low and high cell desnities, while in MCF-7, MDA-MB-231 and HeLa cells, EGFR and cell survival were regulated by hypoxic treatment in a cell-density dependent manner: upregulated at low cell density and downregulated at high cell density. In MCF-7 and HeLa xenografts in nude mice, EGFR expression varied inversely with the pimonidazole level that was used as an indicator of hypoxia, accordant with the effect of hypoxia at high cell density in vitro. Hypoxia induced more remarkable cell autophagy at high cell density than at low cell density. Autophagy inhibitor 3 MA, rather than proteasome inhibitor MG132 inhibited hypoxia-mediated EGFR loss and shifted cell death to cell survival in HeLa cells. The MCF7 cells' sensitivity to ionizing radiation (IR) under hypoxia was also conditional on the cell densities when the hypoxia treatment was introduced, inversely associated with the expression levels of EGFR. Altogether, hypoxia can decrease EGFR expression in some cell lines by enhancing autophagy at high cell density, leading to cell death and hypersensitivity to radiotherapy. This study may help to understand how hypoxia influences EGFR expression and radiosensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app