Add like
Add dislike
Add to saved papers

Physical Activities That Cause High Friction Moments at the Cup in Hip Implants.

BACKGROUND: High friction moments in hip implants contribute to the aseptic loosening of cementless cups, of which there are approximately 100,000 cases per year; sustained joint loading may cause such high moments. The most "critical" physical activities associated with sustained joint loading were identified in this study.

METHODS: Friction moments in the cup were telemetrically measured about 33,000 times in the endoprostheses of 9 subjects during >1,400 different activities. The highest moments were compared with the cup's fixation stability limit of approximately 4 Nm.

RESULTS: A total of 124 different activities caused friction moments meeting or exceeding the critical limit, with the highest value of 11.5 Nm. Most involved sustained high contact forces before or during the activity. The highest peak moments (6.3 to 11.5 Nm) occurred when moving the contralateral leg during 1-legged stance, during breaststroke swimming, muscle stretching, 2-legged stance with muscle contraction, and during static 1-legged stance. The median moments were highest (3.4 to 3.9 Nm) for unstable 1-legged stance, whole-body vibration training, 2-legged stance with an unexpected push at the upper body, 1-legged stance while exercising the contralateral leg, and running after 2-legged stance.

CONCLUSIONS: Frequent unloading plus simultaneous movement of the joint are required to maintain good joint lubrication and keep the friction moments low. Frequent, sustained high loads before or during an activity may cause or contribute to aseptic cup loosening. During the first months after hip arthroplasty, such activities should be avoided or reduced as much as possible. This especially applies during postoperative physiotherapy. Whether these guidelines also apply for subjects with knee implants or arthrotic hip or knee joints requires additional investigation.

CLINICAL RELEVANCE: The risk of aseptic cup loosening may be reduced by avoiding sustained loading of hip implants without periodic joint movement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app