Add like
Add dislike
Add to saved papers

Re-entrant Cavities Enhance Resilience to the Cassie-to-Wenzel State Transition on Superhydrophobic Surfaces during Electrowetting.

Electrowetting-based droplet actuation has applications in digital microfluidics. Mobility of droplets on surfaces can be enhanced using structured superhydrophobic surfaces that offer inherently low adhesion to droplets in the Cassie state. However, these surfaces must be designed to prevent transition to the Wenzel state (in which droplets are immobile) at high electrowetting actuation voltages. The electrowetting behavior of cylindrical microposts and mushroom-shaped re-entrant microstructures, both of which afford excellent superhydrophobicity, is investigated and compared. A surface-energy-based model is employed to estimate the energy barrier for the Cassie-to-Wenzel transition and thus the electrowetting voltage required to initiate this transition. The mushroom structures are predicted to be more resilient to transition (i.e., transition occurs at a voltage that is up to 1.5 times higher) than microposts. Both types of microstructured surfaces are fabricated and electrowetting experiments performed to demonstrate that mushroom structures indeed inhibit the Cassie-to-Wenzel transition at voltages that induce such transition on the cylindrical microposts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app