Add like
Add dislike
Add to saved papers

Atomistic Insight into the Electrochemical Double Layer of Choline Chloride-Urea Deep Eutectic Solvents: Clustered Interfacial Structuring.

Green, stable, and wide electrochemical window deep eutectic solvents (DESs) are ideal candidates for electrochemical systems. However, despite several studies of their bulk properties, their structure and properties under electrified confinement have barely been investigated, which has hindered widespread use of these solvents in electrochemical applications. In this Letter, we explore the electrical double layer structure of 1:2 choline chloride-urea (Reline), with a particular focus on the electrosorption of the hydrogen bond donor on a graphene electrode using atomistic molecular dynamics simulations. We discovered that the interface is composed of a mixed layer of urea and counterions followed by a mixed charged clustered structure of all of the Reline components. This interfacial structuring is strongly dependent on the balance between intermolecular interactions and surface polarization. These results provide new insights into the electrical double layer structure of a new generation of electrolytes whose interfacial structure can be tuned at the molecular level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app