Add like
Add dislike
Add to saved papers

Targeting Tumor Microenvironment by Bioreduction-Activated Nanoparticles for Light-Triggered Virotherapy.

ACS Nano 2018 October 24
Solid tumors characteristically display higher levels of lactate production due to anaerobic metabolism of glucose. Meanwhile, the U.S. Food and Drug Administration (FDA) has approved virotherapy for use in cancer treatment; however systemic administration remains as a particular challenge. Here we report exploitation of tumor lactate production in designing a hypoxia-responsive carrier, self-assembled from hyaluronic acid (HA) conjugated with 6-(2-nitroimidazole)hexylamine, for localized release of recombinant adeno-associated virus serotype 2 (AAV2). The carrier is loaded with lactate oxidase (LOX) and is permeable to small molecules such as the lactate that accumulates in the tumor. Subsequently, LOX oxidizes the lactate to pyruvate inside the carrier, accompanied by internal lowering of oxygen partial pressure. Bioreduction of the 2-nitroimidazole of the HA conjugated with 6-(2-nitroimidazole)hexylamine converts it into a hydrophilic moiety and electrostatically dissociates the carrier and virus. Efficacious and specific delivery was proven by transduction of a photosensitive protein (KillerRed), enabling significant limitation in tumor growth in vivo with photodynamic therapy. An approximate 2.44-fold reduction in tumor weight was achieved after a 2-week course, compared with control groups. Furthermore, conjugation of the AAV2 with iron oxide nanoparticles ("magnetized" AAV2) facilitated magnetic resonance imaging tracking of the virus in vivo. Taken together, the solid tumor microenvironment promotes bioreduction of the lactate-responsive carrier, providing rapid and specific delivery of AAV2 for light-triggered virotherapy via systemic administration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app