Add like
Add dislike
Add to saved papers

Impact of Phaeobacter inhibens on marine eukaryote-associated microbial communities.

Bacteria-host interactions are universal in nature and have significant effects on host functionality. Bacterial secondary metabolites are believed to play key roles in such interactions as well as in interactions within the host-associated microbial community. Hence, prominent secondary metabolite-producing bacteria may be strong drivers of microbial community composition in natural host-associated microbiomes. This has however not been rigorously tested, and the purpose of this study was to investigate how the secondary metabolite producer Phaeobacter inhibens affects the diversity and composition of microbiomes associated with the microalga Emiliania huxleyi and the European flat oyster, Ostrea edulis. Roseobacters were indigenous to both communities exhibiting relative abundances between 2.8 % and 7.0 %. Addition of P. inhibens caused substantial changes in the overall structure of the low-complexity microbiome of E. huxleyi, but did not shape microbial community structure to the same degree in the more complex oyster microbiomes. Species-specific interactions occurred in both microbiomes and specifically the abundances of other putative secondary metabolite-producers such as vibrios and pseudoalteromonads were reduced. Thus, the impact of a bioactive strain like P. inhibens on host-associated microbiomes depends on the complexity and composition of the existing microbiome. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app