Add like
Add dislike
Add to saved papers

Ultra-sensitive microfluidic wearable strain sensor for intraocular pressure monitoring.

Lab on a Chip 2018 October 3
Wearable technologies have potential to transform healthcare by providing continuous measurements of physiological parameters. Sensors that passively monitor physiological pressure without using electronic components are ideal for wearable contact lenses because they are easy to interface with the cornea and the external environment. Here, we report a passive integrated microfluidic sensor with a novel transduction mechanism that converts small strain changes into a large fluidic volume expansion, detectable by a smart-phone camera. The optimization of the sensor architecture and material properties results in a linear and stable sensor response. We have shown that the sensor has a detection limit of <0.06% for uniaxial and <0.004% for biaxial strain. We embedded our sensor in silicone contact lenses and measured the intraocular pressure induced strain in porcine eyes in the physiological range. The sensor's continuous operation capability for >19 hours and a lifetime reaching >7 months demonstrate its potential for long-term ophthalmic monitoring applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app