Add like
Add dislike
Add to saved papers

Evaluation of deep learning methods for parotid gland segmentation from CT images.

The segmentation of organs at risk is a crucial and time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and low contrast to surrounding structures, segmenting the parotid gland is challenging. Motivated by the recent success of deep learning, we study the use of two-dimensional (2-D), 2-D ensemble, and three-dimensional (3-D) U-Nets for segmentation. The mean Dice similarity to ground truth is ∼ 0.83 for all three models. A patch-based approach for class balancing seems promising for false-positive reduction. The 2-D ensemble and 3-D U-Net are applied to the test data of the 2015 MICCAI challenge on head and neck autosegmentation. Both deep learning methods generalize well onto independent data (Dice 0.865 and 0.88) and are superior to a selection of model- and atlas-based methods with respect to the Dice coefficient. Since appropriate reference annotations are essential for training but often difficult and expensive to obtain, it is important to know how many samples are needed for training. We evaluate the performance after training with different-sized training sets and observe no significant increase in the Dice coefficient for more than 250 training cases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app