Add like
Add dislike
Add to saved papers

A targeted therapy for melanoma by graphene oxide composite with microRNA carrier.

Background: Nowadays, the combination of microRNA (miR) is attracting increased attention in clinical cancer trials. However, the clinical use of miR is highly limited because of certain properties such as instability, low-specificity distribution, and metabolic toxicity.

Methods: In order to improve the anti-tumor efficacy and reduce the side effects of miR in treating melanoma, a combination of graphene oxide (GO), chitosan (CS), and a cellular penetrating peptide, MPG, was prepared with solid dispersion method in this research. The research has analyzed the specific components of nano drug-loading complexes GO-CS and GO-CS-MPG through characterization research and confirmed the bio-safety of the carrier material GO-CS-MPG.

Results: The GO-CS-MPG-miR33a/miR199a nano drug-loading complex was successfully constructed and its medical effectiveness was verified. Through the subcutaneous tumor implantation experiment, an evident effect of the drug-loading complex in inhibiting melanoma cells was proven.

Conclusion: Results suggest that GO-CS-MPG may have potential applications in melanoma therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app