Add like
Add dislike
Add to saved papers

Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm.

Optics Letters 2018 October 2
We report here for the first time, to the best of our knowledge, a novel and efficient cascade Raman laser source operating at 2.8 μm by two stages of methane-filled hollow-core fibers (HCFs). In the first stage, a commercial 1064.6 nm laser is used as the pump source, and an efficient first-order Stokes wave of 1543.9 nm is obtained with a quantum conversion efficiency of ∼87% in 2 m ice-cream HCF filled with 2 bar methane gas. In the second stage, efficient 2.8 μm laser emission is also generated by the first-order stimulated Raman scattering of methane, while the pump source is the Stokes wave at 1543.9 nm. A maximum quantum conversion efficiency of ∼75% is obtained with 2.2 m node-less HCF filled with 11 bar methane gas, resulting in a record total quantum efficiency of ∼65%, which is 1.6 times the previous similar result. This work provides a significant efficient method to obtain a wide wavelength range of mid-infrared, even far-infrared fiber laser sources from conveniently available 1 μm band lasers with proper HCFs and different active gases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app