Journal Article
Video-Audio Media
Add like
Add dislike
Add to saved papers

3-D Cell Culture System for Studying Invasion and Evaluating Therapeutics in Bladder Cancer.

Bladder cancer is a significant health problem. It is estimated that more than 16,000 people will die this year in the United States from bladder cancer. While 75% of bladder cancers are non-invasive and unlikely to metastasize, about 25% progress to an invasive growth pattern. Up to half of the patients with invasive cancers will develop lethal metastatic relapse. Thus, understanding the mechanism of invasive progression in bladder cancer is crucial to predict patient outcomes and prevent lethal metastases. In this article, we present a three-dimensional cancer invasion model which allows incorporation of tumor cells and stromal components to mimic in vivo conditions occurring in the bladder tumor microenvironment. This model provides the opportunity to observe the invasive process in real time using time-lapse imaging, interrogate the molecular pathways involved using confocal immunofluorescent imaging and screen compounds with the potential to block invasion. While this protocol focuses on bladder cancer, it is likely that similar methods could be used to examine invasion and motility in other tumor types as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app