Add like
Add dislike
Add to saved papers

Improving chondrocyte harvests with poly(2-hydroxyethyl methacrylate) coated materials in the preparation for cartilage tissue engineering.

Regenerative Therapy 2017 December
Remarkable advances have been made in cartilage regenerative medicine to cure congenital anomalies including microtia, tissue defects caused by craniofacial injuries, and geriatric diseases such as osteoarthritis. However, those procedures require a substantial quantity of chondrocytes for tissue engineering. Previous studies have required several passages to obtain sufficient cell numbers for three-dimensional and monolayer cultures. Thus, our objective was to improve the quantity of chondrocytes that can be obtained by examining an anti-fouling polyhydrophilic chemical called poly(2-hydroxyethyl methacrylate) (pHEMA). To determine the effectiveness of the chemical, pHEMA solution was applied via dip-coating to centrifuge tubes, serological pipettes, and pipette tips. The cell quantity obtained during standard cell culturing and passaging procedures was measured alongside non-coated materials as a control. A significant 2.2-fold increase of chondrocyte yield was observed after 2 passages when pHEMA was applied to the tubes compared to when non-coated tubes were utilized. The 3-dimensional chondrocyte pellets prepared from the respective cell populations and transplanted into nude mice were histologically and biochemically analyzed. No evidence of difference in matrix production for in vitro and in vivo cultures was found as well as similar proliferation rates and colony formation abilities. The use of pHEMA provides a powerful alternative method for expanding the quantity of chondrocytes harvested and handled during cell isolation and passaging to enhance cartilage tissue engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app