Add like
Add dislike
Add to saved papers

Auditory Attention Reduced Ear-Canal Noise in Humans by Reducing Subject Motion, Not by Medial Olivocochlear Efferent Inhibition: Implications for Measuring Otoacoustic Emissions During a Behavioral Task.

Otoacoustic emissions (OAEs) are often measured to non-invasively determine activation of medial olivocochlear (MOC) efferents in humans. Usually these experiments assume that ear-canal noise remains constant. However, changes in ear-canal noise have been reported in some behavioral experiments. We studied the variability of ear-canal noise in eight subjects who performed a two-interval-forced-choice (2IFC) sound-level-discrimination task on monaural tone pips in masker noise. Ear-canal noise was recorded directly from the unstimulated ear opposite the task ear. Recordings were also made with similar sounds presented, but no task done. In task trials, ear-canal noise was reduced at the time the subject did the discrimination, relative to the ear-canal noise level earlier in the trial. In two subjects, there was a decrease in ear-canal noise, primarily at 1-2 kHz, with a time course similar to that expected from inhibition by MOC activity elicited by the task-ear masker noise. These were the only subjects with spontaneous OAEs (SOAEs). We hypothesize that the SOAEs were inhibited by MOC activity elicited by the task-ear masker. Based on the standard rationale in OAE experiments that large bursts of ear-canal noise are artifacts due to subject movement, ear-canal noise bursts above a sound-level criterion were removed. As the criterion was lowered and more high- and moderate-level ear-canal noise bursts were removed, the reduction in ear-canal noise level at the time of the 2IFC discrimination decreased to almost zero, for the six subjects without SOAEs. This pattern is opposite that expected from MOC-induced inhibition (which is greater on lower-level sounds), but can be explained by the hypothesis that subjects move less and create fewer bursts of ear-canal noise when they concentrate on doing the task. In no-task trials for these six subjects, the ear-canal noise level was little changed throughout the trial. Our results show that measurements of MOC effects on OAEs must measure and account for changes in ear-canal noise, especially in behavioral experiments. The results also provide a novel way of showing the time course of the buildup of attention via the time course of the reduction in ear-canal noise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app