Add like
Add dislike
Add to saved papers

Melatonin Protects Against Hypoxia/Reoxygenation-Induced Dysfunction of Human Umbilical Vein Endothelial Cells Through Inhibiting Reactive Oxygen Species Generation.

Background: Hypoxia/reoxygenation (H/R) in human umbilical vein endothelial cells (HUVECs) induces oxidative stress and eventually leads to vascular injury.

Objective: The aim of this study was to examine the effect of melatonin on HUVECs injured by H/R and explore the underlying mechanisms.

Materials and Methods: A model of HUVECs under hypoxia/reoxygenation was established. Cell migration and adhesive ability was measured by wound healing and adhesion assays. Cell proliferation was measured by EdU assay. Production of reactive oxygen species (ROS) was evaluated by CM-H2 DCFDA staining. Actin cytoskeleton rearrangement was examined by immunofluorescence. Western blotting analysis were used to analyze P38 and HSP27 phosphorylation levels.

Results: H/R inhibited HUVEC proliferation, cell migratory and adhesive capacities, whereas melatonin (1~100 μM) inhibited these effects in a dose-dependent manner. Melatonin alone did not affect HUVEC viability, however, it inhibited the increase in ROS production and cytoskeleton disruption elicited by H/R, and it dose-dependently prevented H/R-induced upregulation of P38 and HSP27 phosphorylation. In addition, the ROS scavenger N-acetyl-L-cysteine markedly inhibited increased phosphorylation levels of P38 and HSP27 under H/R.

Conclusions: Melatonin may have a potential clinical effect in trials of H/R-induced vascular injury through its antioxidant property.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app