Add like
Add dislike
Add to saved papers

Molecular Modeling Study toward Development of H 2 S-Free Removal of Iron Sulfide Scale from Oil and Gas Wells.

A common problem that faces the oil and gas industry is the formation of iron sulfide scale in various stages of production. Recently an effective chemical formulation was proposed to remove all types of iron sulfide scales (including pyrite), consisting of a chelating agent diethylenetriaminepentaacetic acid (DTPA) at high pH using potassium carbonate (K2 CO3 ). The aim of this molecular modeling study is to develop insight into the thermodynamics and kinetics of the chemical reactions during scale removal. A cluster approach was chosen to mimic the overall system. Standard density functional theory (B3LYP/6-31G*) was used for all calculations. Low spin K4 Fe(II)4 (S2 H)12 and K3 Fe(II)(S2 H)5 clusters were derived from the crystal structure of pyrite and used as mimics for surface scale FeS2 . In addition, K5 DTPA was used as a starting material too. High spin K3 Fe(II)DTPA, and K2 S2 were considered as products. A series of K m Fe(II)(S2 H) n complexes ( m = n -2, n = 5-0) with various carboxylate and glycinate ligands was used to establish the most plausible reaction pathway. Some ligand exchange reactions were investigated on even simpler Fe(II) complexes in various spin states. It was found that the dissolution of iron sulfide scale with DTPA under basic conditions is thermodynamically favored and not limited by ligand exchange kinetics as the activation barriers for these reactions are very low. Singlet-quintet spin crossover and aqueous solvation of the products almost equally contribute to the overall reaction energy. Furthermore, seven-coordination to Fe(II) was observed in both high spin K3 Fe(II)DTPA and K2 Fe(II)(EDTA)(H2 O) albeit in a slightly different manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app