Add like
Add dislike
Add to saved papers

Study of impaired cardiovascular and respiratory coupling during orthostatic stress based on joint symbolic dynamics.

The present study investigates the instantaneous coupling among the cardiac, vascular, and respiratory systems, using the heart rate, respiration, and systolic and diastolic blood pressure variability in 12 healthy and 16 vasovagal syncope female subjects during a head-up tilt (HUT) testing protocol at 70° This study contributes to the coupling analysis by using a nonlinear joint symbolic dynamics (JSD) in a high-temporal resolution scheme, based on 5 min segments of the time series that are shifted every minute. For each segment, a bivariate JSD matrix was constructed to obtain global and local coupling indices in accordance to Shannon's entropy and the probability of occurrence of various bivariate words, respectively. The novel approach revealed important findings in the coupling dynamics of the systems, thus allowing the detection of group differences during the early orthostatic phase, and during the HUT test, before the occurrence of any pre-syncopal symptoms. In patients, the global indices indicated a significant decrease of cardiovascular coupling, starting at 10 min after the tilt-up, manifested by reduced baroreflex sensitivity and cardiorespiratory coupling that was initiated 8 min after the onset of the orthostatic phase (OP). A decreased autonomic control on cardiovascular-respiratory couplings was further evidenced by increased alterations of the JSD indices during the OP compared to the supine position in patients compared to controls. Furthermore, findings based on local indices demonstrated that female patients showed reductions and disengagements in cardiovascular (p < 0.001) and cardiorespiratory (p < 0.01) couplings, as early as the first 5 min and during the complete OP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app