Add like
Add dislike
Add to saved papers

A novel variable-stiffness flexible manipulator actuated by shape memory alloy for minimally invasive surgery.

This article presents a novel variable-stiffness flexible manipulator for minimally invasive surgery. Each module of the proposed manipulator contains a variable-stiffness mechanism actuated by proactive deformation of shape memory alloy. Due to low driving current, apparent mechanical deformation, suitable phase transformation temperature and biocompatibility of shape memory alloy wire actuation, it is well suited for the manipulator applied in minimally invasive surgery, where variable stiffness is urgently required. In this article, the conceptual design, elastic modulus model, thermo-electric model, stiffness controlling method and finite element method simulation for a single module of the proposed variable-stiffness flexible manipulator are presented. Moreover, the memory shape setting experiment of shape memory alloy wire and fabrication of the single module are carried out. Finally, stiffness characterizations of the mechanism and the single module are studied separately, theoretically and experimentally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app