Add like
Add dislike
Add to saved papers

Dynamics of Oxygen-Independent Photocleavage of Blebbistatin as a One-Photon Blue or Two-Photon Near-Infrared Light-Gated Hydroxyl Radical Photocage.

Development of versatile, chemically tunable photocages for photoactivated chemotherapy (PACT) represents an excellent opportunity to address the technical drawbacks of conventional photodynamic therapy (PDT) whose oxygen-dependent nature renders it inadequate in certain therapy contexts such as hypoxic tumors. As an alternative to PDT, oxygen free mechanisms to generate cytotoxic reactive oxygen species (ROS) by visible light cleavable photocages are in demand. Here, we report the detailed mechanisms by which the small molecule blebbistatin acts as a one-photon blue light-gated or two-photon near-infrared light-gated photocage to directly release a hydroxyl radical (• OH) in the absence of oxygen. By using femtosecond transient absorption spectroscopy and chemoselective ROS fluorescent probes, we analyze the dynamics and fate of blebbistatin during photolysis under blue light. Water-dependent photochemistry reveals a critical process of water-assisted protonation and excited state intramolecular proton transfer (ESIPT) that drives the formation of short-lived intermediates, which surprisingly culminates in the release of • OH but not superoxide or singlet oxygen from blebbistatin. CASPT2//CASSCF calculations confirm that hydrogen bonding between water and blebbistatin underpins this process. We further determine that blue light enables blebbistatin to induce mitochondria-dependent apoptosis, an attribute conducive to PACT development. Our work demonstrates blebbistatin as a controllable photocage for • OH generation and provides insight into the potential development of novel PACT agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app