Add like
Add dislike
Add to saved papers

Effects of experimental manipulation of hematocrit on avian flight performance in high- and low-altitude conditions.

Despite widely held assumptions that hematocrit (Hct) is a key determinant of aerobic capacity and exercise performance, this relationship has not often been tested rigorously in birds and results to date are mixed. Migration in birds involves high-intensity exercise for long durations at various altitudes. Therefore, it provides a good model system to examine the effect of Hct on flight performance and physiological responses of exercise at high altitude. We treated yellow-rumped warblers ( Setophaga coronata ) with avian erythropoietin (EPO) and anti-EPO to experimentally manipulate Hct and assessed flight performance at low and high altitudes using a hypobaric wind tunnel. We showed that anti-EPO-treated birds had lower Hct than vehicle- and EPO--treated birds post-treatment. Anti-EPO-treated birds also had marginally lower exercise performance at low altitude, committing a higher number of strikes (mistakes) in the first 30 min of flight. However, anti-EPO-treated birds performed significantly better at high altitude, attaining a higher altitude in a ramped altitude challenge to 3000 m equivalent altitude, and with a longer duration of flight at high altitude. Birds exercising at high altitude showed decreased Hct, increased glucose mobilization and decreased antioxidant capacity, regardless of treatment. In summary, we provide experimental evidence that the relationship between Hct and exercise performance is dependent on altitude. Future studies should investigate whether free-living birds adaptively modulate their Hct, potentially through a combination of erythropoiesis and plasma volume regulation (i.e. hemodilution), based on the altitude they fly at during migratory flight.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app