Add like
Add dislike
Add to saved papers

c-MYC Drives Breast Cancer Metastasis to the Brain, but Promotes Synthetic Lethality with TRAIL.

: Brain metastasis in breast cancer is particularly deadly, but effective treatments remain out of reach due to insufficient information about the mechanisms underlying brain metastasis and the potential vulnerabilities of brain-metastatic breast cancer cells. Here, human breast cancer cells and their brain-metastatic derivatives (BrMs) were used to investigate synthetic lethal interactions in BrMs. First, it was demonstrated that c-MYC activity is increased in BrMs and is required for their brain-metastatic ability in a mouse xenograft model. Specifically, c-MYC enhanced brain metastasis by facilitating the following processes within the brain microenvironment: (i) invasive growth of BrMs, (ii) macrophage infiltration, and (iii) GAP junction formation between BrMs and astrocytes by upregulating connexin 43 (GJA1/Cx43). Furthermore, RNA-sequencing (RNA-seq) analysis uncovered a set of c-MYC-regulated genes whose expression is associated with higher risk for brain metastasis in breast cancer patients. Paradoxically, however, increased c-MYC activity in BrMs rendered them more susceptible to TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis. In summary, these data not only reveal the brain metastasis-promoting role of c-MYC and a subsequent synthetic lethality with TRAIL, but also delineate the underlying mechanism. This suggests TRAIL-based approaches as potential therapeutic options for brain-metastatic breast cancer. IMPLICATIONS: This study discovers a paradoxical role of c-MYC in promoting metastasis to the brain and in rendering brain-metastatic cells more susceptible to TRAIL, which suggests the existence of an Achilles' heel, thus providing a new therapeutic opportunity for breast cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app