Add like
Add dislike
Add to saved papers

Sortaggable liposomes: Evaluation of reaction conditions for single-domain antibody conjugation by Sortase-A and targeting of CD11b + myeloid cells.

Active targeting with ligand coated liposomal drug delivery systems is a means to increase the therapeutic index of drugs. Stable ligand coating requires bilayer anchorage of the commonly proteinaceous ligands and hence a conjugation of lipid structures towards amino acids. This often leads to heterogeneous reaction products especially when chemical coupling methods are employed. Chemoenzymatic Sortase-A mediated transpeptidation (sortagging) is a useful tool to avoid this protein heterogeneity through its site-specific, bioorthogonal ligation mechanism. Manufacturing of such sortaggable, pentaglycine modified liposomes was developed by adaption of a scalable solvent injection technique. The pentaglycine liposomes were prepared with different degrees of PEGylation and steric accessibility of the pentaglycine motif. Comparable hydrodynamic diameters (146-188 nm) of the different formulations were obtained after a flow rate screening. The sortagging reactivity of a single-domain antibody (VHH) towards the pentaglycine liposomes was strongly dependent on the steric accessibility of the pentaglycine nucleophile. Adjusting the pentaglycine to ligand ratio improved conversion rates up to 80 %. The liposome bound VHH was accessible for its soluble antigen as shown by a chromatography based binding assay. Mono- and granulocytes could be selectively targeted in vitro by conjugation of BMX1, a VHH directed towards human myeloid cell surface marker CD11b. Confocal microscopy revealed intracellular localization of the targeted liposomes. The developability of those pentaglycine liposomes as well as their proof of principle for targeted drug delivery shows their potential for further investigation, for example as delivery platform for diagnostics or drugs into the tumor microenvironment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app