Add like
Add dislike
Add to saved papers

Regulation of systemic tissue injury by coagulation inhibitors in B6.MRL/lpr autoimmune mice.

Impaired fibrinolysis and complement activation in Systemic Lupus Erythematosus contributes to disease amplification including increased risk of thrombosis and tissue Ischemia/Reperfusion (IR) injury. Previous work has demonstrated complement is a key regulator of tissue injury. In these studies inhibitors had varying efficacies in attenuating injury at primary versus systemic sites, such as lung. In this study the role of coagulation factors in tissue injury and complement function was evaluated. Tissue Factor Pathway Inhibitor (TFPI), an extrinsic pathway inhibitor, and Anti-Thrombin III, the downstream common pathway inhibitor, were utilized in this study. TFPI was more effective in attenuated primary intestinal tissue injury. However both attenuated systemic lung injury. However, ATIII treatment resulting in enhanced degradation of C3 split products in lung tissue compared to TFPI. This work delineates the influence of specific early and late coagulation pathway components during initial tissue injury versus later distal systemic tissue injury mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app