Add like
Add dislike
Add to saved papers

Macropinocytosis-dependent endocytosis of Japanese flounder IgM + B cells and its regulation by CD22.

Fish & Shellfish Immunology 2018 September 26
B cells in fish are proven to be endocytic and have a great contribution to innate immunity like phagocytosis. In this study, the endocytic capacity and the corresponding internalization pathways of IgM+ B cells in Japanese flounder (Paralichthys olivaceus) were investigated. The results showed that IgM+ B cells in peripheral blood leukocytes (PBL) and splenic leukocytes (SL) exhibited different abilities to ingest 0.5 μm and 1 μm latex beads through macropinocytosis-dependent endocytic pathway. Japanese flounder CD22 (PoCD22) co-stimulatory signals were identified to be essential for the innate immune responses in B cells. Most of IgM+ B cells and some IgM- cells were demonstrated to be PoCD22 positive. When PoCD22 was blocked by antibody, the endocytic activities and reactive oxygen species (ROS) activities of SL IgM+ B cells were significantly increased, while the endocytic and ROS activities of PBL IgM+ B cells were significant decreased. These results collectively suggest that Japanese flounder IgM+ B cells are able to employ macropinocytosis-dependent endocytic pathway, which is under the regulation of CD22.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app