Add like
Add dislike
Add to saved papers

Effect-based and chemical analyses of agonistic and antagonistic endocrine disruptors in multiple matrices of eutrophic freshwaters.

In the present study, both bioanalytical and instrumental tools were employed to examine the endocrine-disruptive potentials of water samples, cyanobloom samples, and sediment samples collected from in the northern region of Taihu Lake (China) during cyanobloom season. Results from cell-based bioassays suggested the occurrence of estrogenic, anti-estrogenic, anti-androgenic, and anti-glucocorticogenic activities, while no androgenic and glucocorticogenic activities were observed in the collected samples. Using an UPLC-MS/MS system, 29 endocrine disrupting compounds including seven estrogens, seven androgens, six progestogens, and five adrenocortical hormones and four industrial pollutants were simultaneously detected. 17, 20 and 12 chemicals were detected at least in one of the water samples, cyanobloom samples and sediment samples, respectively. Since both agonistic and antagonistic endocrine-disruptive activities were detected in the present study, commonly used receptor-based in vitro bioassays resulted in net effects, suggesting that the hormone receptor agonistic potentials might be underestimated with this practice. The EDCs detected in cyanobloom samples also highlight the necessity to consider the phytoplankton matrix for understanding the mass fluxes of endocrine disruptors in eutrophic freshwaters and to consider it in monitoring strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app