Add like
Add dislike
Add to saved papers

CO 2 -responsive O/W microemulsions prepared using a switchable superamphiphile assembled by electrostatic interactions.

A CO2 -responsive superamphiphile was designed to form switchable O/W microemulsions of rapid switching responses. The linear structured superamphiphile was assembled via electrostatic interactions between anionic oleic acid and cationic Jeffamine D-230 at a mole ratio of 1:1. Addition of the CO2 -responsive superamphiphile and 1-butanol as a co-surfactant led to the spontaneous formation of stable heptane-in-water microemulsions. Treating this stable microemulsion with CO2 for 20 s caused dissociation of the superamphiphile into interfacial inactive components, leading to a complete phase separation of the microemulsion into immiscible oil and water phases. Removing the CO2 from the system by N2 sparging at 60 °C for 10 min converted the phase-separated system into a transparent microemulsion as a result of the in situ formation of the superamphiphile. Compared with the results from previous studies, the O/W microemulsion formed using the current superamphiphile with the co-addition of 1-butanol featured not only a unique thermodynamical stability of nano-sized droplets, but also a desired response to CO2 to achieve a rapid and complete phase separation, and re-microemulsification as desired with N2 sparging, making this CO2 -responsive O/W microemulsion a promising candidate for applications such as nanomaterial synthesis, enhanced oil recovery and soil remediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app