Add like
Add dislike
Add to saved papers

Immediate-early gene Homer1a intranuclear transcription focus intensity as a measure of relative neural activation.

Hippocampus 2018 September 29
Immediate-early genes (IEGs) exhibit a rapid, transient transcription response to neuronal activation. Fluorescently-labeled mRNA transcripts appear as bright intranuclear transcription foci (INF) which have been used as an all-or-nothing indicator of recent neuronal activity; however, it would be useful to know whether INF fluorescence can be used effectively to assess relative activations within a neural population. We quantified the Homer1a (H1a) response of hippocampal neurons to systematically varied numbers of exposures to the same places by inducing male Long-Evans rats to run laps around a track. Previous studies reveal relatively stable firing rates across laps on a familiar track. A strong linear trend (r2 > 0.9) in INF intensity was observed between 1 and 25 laps, after which INF intensity declined as a consequence of dispersion related to the greater elapsed time. When the integrated fluorescence of the entire nucleus was considered instead, the linear relationship extended to 50 laps. But there was only an approximate doubling of H1a detected for this 50-fold variation in total spiking. Thus, the intranuclear H1a RNA fluorescent signal does provide a relative measure of how many times a set of neurons was activated over a ~10 min period, but the dynamic range and hence S/N ratios are poor. This low dynamic range may reflect previously reported reductions in the IEG response during repeated episodes of behavior over longer time scales. It remains to be determined how well the Homer1a signal reflects relative firing rates within a population of neurons in response to a single, discrete behavioral event. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app