Add like
Add dislike
Add to saved papers

Iterative quality enhancement via residual-artifact learning networks for low-dose CT.

Radiation exposure and the associated risk of cancer for patients in computed tomography (CT) scans have been major clinical concerns. The radiation exposure can be reduced effectively via lowering the x-ray tube current (mA). However, this strategy may lead to excessive noise and streak artifacts in the conventional filtered back-projection reconstructed images. To address this issue, some deep convolutional neural network (ConvNet) based approaches have been developed for low-dose CT imaging inspired by the recent development of machine learning. Nevertheless, some of the image textures reconstructed by the ConvNet could be corrupted by the severe streaks, especially in ultra-low-dose cases, which could be close to prostheses and hamper diagnosis. Therefore, in this work, we propose an iterative residual-artifact learning ConvNet (IRLNet) approach to improve the reconstruction performance over the ConvNet based approaches. Specifically, the proposed IRLNet estimates the high-frequency details within the noise and then removes them iteratively; after eliminating severe streaks in the low-dose CT images, the residual low-frequency details can be processed through the conventional network. Moreover, the proposed IRLNet scheme can be extended for robust handling of quantitative dual energy CT/cerebral perfusion CT imaging, and statistical iterative reconstruction. Real patient data are used to evaluate the proposed IRLNet, and the experimental results demonstrate that the proposed IRLNet approach outperforms the previous ConvNet based approaches in reducing the image noise and streak artifacts efficiently at the same time as preserving edge details well, suggesting that the proposed IRLNet approach can be used to improve the CT image quality, especially in ultra-low-dose cases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app