Add like
Add dislike
Add to saved papers

Excellent thermal stability owing to Ge and C doping in Sb 2 Te-based high-speed phase-change memory.

Nanotechnology 2018 December 15
The contradictory nature between transition speed and thermal stability of phase-change materials has always been the key limitation to the achievement of wide applications under harsh conditions. Ge2.3 Sb2.0 Te phase-change alloy is proposed here to feature high thermal stability (10 year data retention above 220 °C) and fast switching speed (SET programming speed up to 5 ns) for electronic storage. In mushroom-shaped device cells, the nanocomposite materials implement an endurance life of nearly 1 × 105 cycles. Such operation speed among high-temperature alloys is the best ever reported. And the moderate incorporation of C offers intriguing benefits that include enhanced thermal stability and reduced RESET voltage in the above-mentioned Ge-rich Sb2 Te-based memory cells. Through microscopic analysis, the local segregation of C dopants can further refine the crystalline grains and thus induce a lower volume change and roughness upon heating. These properties are crucial with regard to the application potential in high-performance and high-density embedded memories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app