Add like
Add dislike
Add to saved papers

Automatic segmentation of abnormal capillary nonperfusion regions in optical coherence tomography angiography images using marker-controlled watershed algorithm.

Diabetic retinopathy (DR) is one of the most complications of diabetes. It is a progressive disease leading to significant vision loss in the patients. Abnormal capillary nonperfusion (CNP) regions are one of the important characteristics of DR increasing with its progression. Therefore, automatic segmentation and quantification of abnormal CNP regions can be helpful to monitor the patient's treatment process. We propose an automatic method for segmentation of abnormal CNP regions on the superficial and deep capillary plexuses of optical coherence tomography angiography (OCTA) images using the marker-controlled watershed algorithm. The proposed method has three main steps. In the first step, original images are enhanced using the vesselness filter and then foreground and background marker images are computed. In the second step, abnormal CNP region candidates are segmented using the marker-controlled watershed algorithm, and in the third step, the candidates are modeled using an undirected weighted graph and finally, by applying merging and removing procedures correct abnormal CNP regions are identified. The proposed method was evaluated on a dataset with 36 normal and diabetic subjects using the ground truth obtained by two observers. The results show the proposed method outperformed some of the state-of-the-art methods on the superficial and deep capillary plexuses according to the most important metrics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app