Add like
Add dislike
Add to saved papers

Cytokinesis Block Micronucleus Cytome (CBMN Cyt) Assay Biomarkers and Their Association With Radiation Sensitivity Phenotype in Prostate Cancer Cases and DNA Repair Gene hOGG1 (C1245G) Polymorphism.

Prostate cancer (PC) is commonly diagnosed cancer in men but only a few risk factors, such as family history, ethnicity, and age have been established. Chromosomal instability is another possible risk factor but this has not been adequately explained previously. In this study, we tested the hypotheses that peripheral blood lymphocytes (PBL) of PC patients have (1) an abnormally high level of chromosomal instability; (2) that they are hypersensitive to ionizing radiation-induced DNA damage; and (3) that these phenotypes are affected by hOGG1 (C1245G) polymorphism. These experiments were performed using the cytokinesis-block micronucleus Cytome (CBMN cyt) assay in PC cases and controls. We found that spontaneous or radiation-induced (3G) micronucleus (MN) frequency is not significantly different between both groups. However, spontaneous frequency of nucleoplasmic bridges (NPBs) and radiation-induced nuclear buds (NBuds) were significantly higher in patients vs. controls (P < 0.0001; P = 0.0005, respectively). In addition, apoptosis and nuclear division index (NDI) was significantly higher in patients compared to controls after radiation treatment (P = 0.006; P = 0.0002, respectively). Furthermore carriage of at least one G allele of hOGG1 (C1245G) polymorphism was associated with a significantly increased odds ratio (OR) to have a base-line MN, NPB, or NBud frequency greater than medium level compared to homozygotes for C allele (OR:1.94, 1.77, 2.36, respectively, P = 0.02; 0.04, and 0.004, respectively). Our results support the hypotheses that those who develop PC have significantly higher level of genomic instability which is further increased in those who carry G allele of the hOGG1 (C1245G) polymorphism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app