Add like
Add dislike
Add to saved papers

Maximum Likelihood Estimates of Rearrangement Distance: Implementing a Representation-Theoretic Approach.

The calculation of evolutionary distance via models of genome rearrangement has an inherent combinatorial complexity. Various algorithms and estimators have been used to address this; however, many of these set quite specific conditions for the underlying model. A recently proposed technique, applying representation theory to calculate evolutionary distance between circular genomes as a maximum likelihood estimate, reduces the computational load by converting the combinatorial problem into a numerical one. We show that the technique may be applied to models with any choice of rearrangements and relative probabilities thereof; we then investigate the symmetry of circular genome rearrangement models in general. We discuss the practical implementation of the technique and, without introducing any bona fide numerical approximations, give the results of some initial calculations for genomes with up to 11 regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app