Journal Article
Review
Add like
Add dislike
Add to saved papers

Advances in DNA Barcoding of Toxic Marine Organisms.

There are more than 200,000 marine species worldwide. These include many important economic species, such as large yellow croaker, ribbonfish, tuna, and salmon, but also many potentially toxic species, such as blue-green algae, diatoms, cnidarians, ctenophores, Nassarius spp., and pufferfish. However, some edible and toxic species may look similar, and the correct identification of marine species is thus a major issue. The failure of traditional classification methods in certain species has promoted the use of DNA barcoding, which uses short, standard DNA fragments to assist with species identification. In this review, we summarize recent advances in DNA barcoding of toxic marine species such as jellyfish and pufferfish, using genes including cytochrome oxidase I gene ( COI ), cytochrome b gene ( cytb ), 16S rDNA , internal transcribed spacer ( ITS ), and Ribulose-1,5-bisphosphate carboxylase oxygenase gene ( rbcL ). We also discuss the application of this technique for improving the identification of marine species. The use of DNA barcoding can benefit the studies of biological diversity, biogeography, food safety, and the detection of both invasive and new species. However, the technique has limitations, particularly for the analysis of complex objects and the selection of standard DNA barcodes. The development of high-throughput methods may offer solutions to some of these issues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app