Add like
Add dislike
Add to saved papers

The effect of 2.45 GHz non-ionizing radiation on the structure and ultrastructure of the testis in juvenile rats.

BACKGROUND: Nowadays, mobile devices that emit non-ionizing electromagnetic radiation (EMR) are predominantly used by juveniles and pubescents. The aim of the present study was to evaluate the effect of whole body pulsed EMR on the juvenile Wistar albino rat testis at a frequency of 2.45 GHz and mean power density of 2.8 mW/cm².

METHODS: The investigated animals (n=24) were divided into two control and two EMR groups (5 and 6 week old rats; 6 rats per group). Both EMR groups were irradiated continually for 3 weeks (2h/day) from postnatal days 14 and 21, respectively.

RESULTS: EMR caused an irregular shape of seminiferous tubules with desquamated immature germ cells in the lumen, a large number of empty spaces along the seminiferous epithelium and dilated and congested blood vessels in the interstitial tissue of the testis. The cytoplasm of Sertoli cells showed strong vacuolization and damaged organelles, with the cytoplasm full of different heterophagic and lipid vacuoles or the cytoplasm of spermatocytes with swollen mitochondria in both irradiated groups. A significant increase in the total tubular area of seminiferous tubules was observed in both EMR groups compared with controls (P<0.001). A significant increase in the TUNEL-positive apoptotic nuclei (P<0.01) was accompanied by a significant rise in both Cu-Zn-SOD (P<0.01) and Mn-SOD (P<0.001) positive cells in the 6 week old experimental rats compared to control animals.

CONCLUSION: Our results confirmed a harmful effect of non-ionizing radiation on the structure and ultrastructure of the juvenile rat testis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app