Add like
Add dislike
Add to saved papers

Pioglitazone prevents the increase in plasma ketone concentration associated with dapagliflozin in insulin-treated T2DM patients: Results from the Qatar Study.

Because of the unique mechanism of action of sodium-glucose co-transport inhibitors (SGLT2i), which is independent of insulin secretion and insulin action, members of this class of drugs effectively lower plasma glucose concentration when used in combination with all other antidiabetic agents, including insulin. Increased plasma ketone concentration has been reported in association with SGLT2i initiation, which, under certain clinical conditions, has developed into diabetic ketoacidosis. The daily insulin dose often is reduced at the time of initiating SGLT2i therapy in insulin-treated patients to avoid hypoglycaemia. However, reduction of insulin dose can increase the risk of ketoacidosis. In the present study, we examined the effect of the addition of dapagliflozin plus pioglitazone on plasma ketone concentration in insulin-treated T2DM patients and compared the results to the effect of dapagliflozin alone. A total of 18 poorly controlled, insulin-treated T2DM participants in the Qatar Study received dapagliflozin (10 mg) plus pioglitazone (30 mg), and 10 poorly controlled non-insulin-treated T2DM patients received dapagliflozin (10 mg) alone for 4 months. Dapagliflozin plus pioglitazone produced a robust decrease in HbA1c (-1.4%) and resulted in a 50% reduction in daily insulin dose, from 133 to 66 units, while dapagliflozin alone caused a 0.8% reduction in HbA1c. Dapagliflozin caused a four-fold increase in fasting plasma ketone concentration, while the combination of pioglitazone plus dapagliflozin was not associated with a significant increase (0.13 vs 0.15 mM) in plasma ketone concentration or in risk of hypoglycaemia. These results demonstrate that the addition of pioglitazone to dapagliflozin prevents the increase in plasma ketone concentration associated with SGLT2i therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app