Add like
Add dislike
Add to saved papers

Complexity of brain activity and connectivity in functional neuroimaging.

Understanding the complexity of human brain dynamics and brain connectivity across the repertoire of functional neuroimaging and various conditions, is of paramount importance. Novel measures should be designed tailored to the input focusing on multichannel activity and dynamic functional brain connectivity (DFBC). Here, we defined a novel complexity index (CI) from the field of symbolic dynamics that quantifies patterns of different words up to a length from a symbolic sequence. The CI characterizes the complexity of the brain activity. We analysed DFBC by adopting the sliding window approach using imaginary part of phase locking value (iPLV) for EEG/ECoG/MEG and wavelet coherence (WC) for fMRI. Both intra and cross-frequency couplings (CFC) namely phase-to-amplitude were estimated using iPLV/WC at every snapshot of the DFBC. Using proper surrogate analysis, we defined the dominant intrinsic coupling mode (DICM) per pair of regions-of-interest (ROI). The spatiotemporal probability distribution of DICM were reported to reveal the most prominent coupling modes per condition and modality. Finally, a novel flexibility index is defined that quantifies the transition of DICM per pair of ROIs between consecutive time windows. The whole methodology was demonstrated using four neuroimaging datasets (EEG/ECoG/MEG/fMRI). Finally, we succeeded to totally discriminate healthy controls from schizophrenic using FI and dynamic reconfiguration of DICM. Anaesthesia independently of the drug caused a global decreased of complexity in all frequency bands with the exception in δ and alters the dynamic reconfiguration of DICM. CI and DICM of MEG/fMRI resting-state recordings in two spatial scales were high reliable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app