Add like
Add dislike
Add to saved papers

RNA sequencing and Prediction Tools for Circular RNAs Analysis.

Circular RNAs (circRNAs) are noncoding and single-stranded RNA transcripts able to form covalently circular-closed structures. They are generated through alternative splicing events and widely expressed from human to viruses. CircRNAs have been appointed as potential regulators of microRNAs (miRNAs), RNA-binding proteins (RPBs), and lineal protein-coding transcripts. Although their mechanism of action remains unclear, the deregulation of circular RNAs has been confirmed in different diseases such as Alzheimer or cancer.The introduction of high-throughput next-generation sequencing (NGS) technology provides millions of short RNA sequences at single-nucleotide level, allowing an accurate and proficient method to measure circular RNAs. Novel protocols based on non-polyadenylated RNAs, rRNA-depleted, and RNA exonuclease-based enrichment approaches (RNase R) have taken even further the possibility of detecting circRNAs.Besides, the identification of circRNAs presence requires the development of specific bioinformatics tools to detect junction-spanning sequences from transcriptome deep-sequencing samples. Thus, recently established bioinformatics' approaches have permitted the discovery of an elevated number of different circRNAs in diverse organisms. In that sense, recent studies have compared different methods and advocate the simultaneous use of more than one prediction tool. For that reason, we want to highlight pipelines such as miARma-Seq that is able to execute various circular RNA identification algorithms in an easy way, without the tedious installation of third-party prerequisites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app