Add like
Add dislike
Add to saved papers

Low-Temperature EPR Spectroscopy as a Probe-Free Technique for Monitoring Oxidants Formed in Tumor Cells and Tissues: Implications in Drug Resistance and OXPHOS-Targeted Therapies.

Oxidants formed from oxidative and nitrative metabolism include reactive oxygen species (ROS) such as superoxide, hydrogen peroxide/lipid hydroperoxides and reactive nitrogen species (RNS) (e.g., peroxynitrite [ONOO- ] and nitrogen dioxide), and reactive halogenated species (e.g., hypochlorous acid [HOCl]). Increasingly, ROS and RNS are implicated in tumorigenesis as well as tumor growth, progression, and metastasis. Recently, ROS were implicated in drug resistance, metabolic reprogramming, and T-cell metabolism in immunotherapy. Mostly, fluorescent probes have been used in cell culture systems. The identity of species is obtained by LC-MS analyses of diagnostic marker products. However, extrapolation of these assays to cancer xenografts is difficult if not impossible. Thus, development of a probe-free assay for monitoring and assessing oxidant formation in tumor cells and tumor xenografts is critical and timely. Here, we describe the use of ex vivo electron paramagnetic resonance (EPR) spectroscopy at cryogenic temperatures as a uniquely useful probe-free technique for assessing intracellular oxidation and oxidants via EPR signals from redox centers, particularly iron-sulfur clusters, in mitochondrial and cytosolic redox proteins. Examples of cancer cells subjected to inhibition of mitochondrial oxidative phosphorylation are presented. This ex vivo methodology can be readily extended to monitor oxidant formation in tumor tissues isolated from mice and humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app