Add like
Add dislike
Add to saved papers

Optimal Shrinkage of Eigenvalues in the Spiked Covariance Model.

We show that in a common high-dimensional covariance model, the choice of loss function has a profound effect on optimal estimation. In an asymptotic framework based on the Spiked Covariance model and use of orthogonally invariant estimators, we show that optimal estimation of the population covariance matrix boils down to design of an optimal shrinker η that acts elementwise on the sample eigenvalues. Indeed, to each loss function there corresponds a unique admissible eigenvalue shrinker η * dominating all other shrinkers. The shape of the optimal shrinker is determined by the choice of loss function and, crucially, by inconsistency of both eigenvalues and eigenvectors of the sample covariance matrix. Details of these phenomena and closed form formulas for the optimal eigenvalue shrinkers are worked out for a menagerie of 26 loss functions for covariance estimation found in the literature, including the Stein, Entropy, Divergence, Fréchet, Bhattacharya/Matusita, Frobenius Norm, Operator Norm, Nuclear Norm and Condition Number losses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app