JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modeling and Mutational Analysis of the Binding Mode for the Multimodal Antidepressant Drug Vortioxetine to the Human 5-HT 3A Receptor.

5-Hydroxytryptamine3 (5-HT3 ) receptors are ligand-gated ion channels that mediate neurotransmission by serotonin in the central nervous system. Pharmacological inhibition of 5-HT3 receptor activity has therapeutic potential in several psychiatric diseases, including depression and anxiety. The recently approved multimodal antidepressant vortioxetine has potent inhibitory activity at 5-HT3 receptors. Vortioxetine has an inhibitory mechanism that differs from classic 5-HT3 receptor competitive antagonists despite being believed to bind in the same binding site. Specifically, vortioxetine shows partial agonist activity followed by persistent and insurmountable inhibition. We have investigated the binding mode of vortioxetine at the human 5-HT3A receptor through computational and in vitro experiments to provide insight into the molecular mechanisms behind the unique pharmacological profile of the drug. We find that vortioxetine binds in a manner different from currently known 5-HT3A orthosteric ligands. Specifically, while the binding pattern of vortioxetine mimics some aspects of both the setron class of competitive antagonists and 5-hydroxytryptamine (5-HT) with regards to interactions with residues of the aromatic box motif in the orthosteric binding site, vortioxetine also forms interactions with residues not previously described to be important for the binding of either setrons or 5-HT such as Val202 on Loop F. Our results expand the framework for understanding how orthosteric ligands drive 5-HT3 receptor function, which is of importance for the potential future development of novel classes of 5-HT3 receptor antagonists.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app