Add like
Add dislike
Add to saved papers

Anti-hypertrophic and anti-apoptotic effects of short peptides of potato protein hydrolysate against hyperglycemic condition in cardiomyoblast cells.

Cardiomyocyte hypertrophy is a critical pathological phenomenon observed in diabetic cardiomyopathy. Various molecular events including the Calcineurin/nuclear factor of activated T-cell (NFAT) mediated signaling contributes to the pathogenesis of cardiac hypertrophy. While different new therapeutic interventions are investigated in order to overcome pathological hypertrophic effects, recent studies on peptide hydrolysates from common foods have gained interest. In this study the cytoprotective efficiency of two short peptides DIKTNKPVIF (DF) and a dipeptide IF from a potato protein hydrolysate were evaluated for their anti-hypertrophic effects against high glucose (HG) challenge. Murine cardio myoblast (H9c2) cells were challenges with 33 mM of glucose and after 1 h were treated with DF or IF for 24 h. The results showed enlargement in cell size, elevated ANP and BNP expression induced by HG however the abnormalities were efficiently attenuated by IF and DF. Further, HG increased the levels of calcineurin and NFATC3 which was markedly suppressed by DF and IF in H9c2 cells. The results further showed that DF and IF suppresses the activation of p38 in a dose dependent manner with no notable effects on JNK activation. DF and IF also attenuated the HG induced apoptotic effects in H9c2 cells by suppressing the apoptotic proteins and by enhancing the survival and anti-apoptotic proteins. Further, it should be noted that administration of both the fragments showed similar effects in all the analysis. Our results therefore showed that DF and IF of potato protein hydrolysate possess efficient protective effects against HG-induced cardiomyocyte damages by ameliorating the apoptotic and hypertrophic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app