Add like
Add dislike
Add to saved papers

Analysis of running stability during 5000 m running .

In the analysis of human walking, the assessment of local dynamic stability (LDS) has been widely used to determine gait stability. To extend the concepts of LDS to the analysis of running biomechanics, this study aimed to compare LDS during exhaustive running between competitive and recreational runners. Fifteen recreational and fifteen competitive runners performed an exhaustive 5000 m run. Inertial measurement units at foot, pelvis, and thorax were used to determine local dynamic running stability as quantified by the largest Lyapunov exponent. In addition, we measured running velocity, lactate levels, perceived exertion, and foot strike patterns. LDS at the start, mid, and end of a 5000 m run was compared between the two groups by a two-way repeated-measures analysis of variance (ANOVA). Local dynamic stability increased during the run (thorax, pelvis) in both recreational and competitive runners (PThorax  = 0.006; PPelvis  = 0.001). During the whole run, competitive runners showed a significantly higher LDS (P = 0.029) compared to recreational runners at the foot kinematics. In conclusion, exhaustive running can lead to improvements in LDS, indicating a higher local dynamic stability of the running technique with increasing exhaustion. Furthermore, LDS of the foot differs between the two groups at all measurement points. The results of this study show the value of determining LDS in athletes as it can give a better understanding into the biomechanics of running.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app